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According to the theory of efficient coding, sensory systems are adapted to represent natural scenes
with high fidelity and at minimal metabolic cost. Testing this hypothesis for sensory structures
performing non-linear computations on high dimensional stimuli is still an open challenge. Here we
develop a method to characterize the sensitivity of the retinal network to perturbations of a stimulus.
Using closed-loop experiments, we explore selectively the space of possible perturbations around a
given stimulus. We then show that the response of the retinal population to these small perturbations
can be described by a local linear model. Using this model, we computed the sensitivity of the neural
response to arbitrary temporal perturbations of the stimulus, and found a peak in the sensitivity as
a function of the frequency of the perturbations. Based on a minimal theory of sensory processing,
we argue that this peak is set to maximize information transmission. Our approach is relevant to
testing the efficient coding hypothesis locally in any context where no reliable encoding model is
known.

The efficient coding hypothesis [1, 2] postulates that
neural encoding of stimuli has adapted to represent nat-
ural occuring sensory scenes optimally in the presence
of limited resources. This principle can be recast in the
language of information theory, and it has been argued
that early stages of sensory processing aim to represent
information in an efficient form [3, 4].

How can we test if this hypothesis is valid? When
sensory systems can be approximated as linear or quasi-
linear filters [5–7], the efficient coding hypothesis yields
quantitative predictions about the shape of the recep-
tive fields [8–12]. Beyond the linear case, predictions
have only been drawn in restricted cases, e.g. for one-
dimension stimuli or single neurons [13–16]. Testing the
efficient coding hypothesis for non-linear systems is more
challenging, especially if the stimulus and response are
high dimensional. If a non-linear model existed that
could accurately predict the network response to com-
plex stimuli, then the sensitivity of the representation—
its ability to discriminate responses to small perturba-
tions around any given stimulus—could be estimated di-
rectly from that model. According to efficient coding
theory, the form of this sensitivity should be related to
the stimulus statistics [17, 18]. However, in the majority
of cases, such a comprehensive non-linear model is not
available, and there is no method to quantify sensitiv-
ity and to assess the efficient coding hypothesis. Even
in the retina, previous studies have shown that the re-
sponse to complex stimuli can be produced by complex
circuits involving several non-linearities [19, 20], and a
general predictive model is lacking. New ways to test the
efficiency of the retinal representation of complex scenes
are thus needed.

∗These authors contributed equally.
†These authors contributed equally. Correspondence should be sent
to olivier.marre@gmail.com and tmora@lps.ens.fr.

Here we present a novel approach to measure experi-
mentally the sensitivity of a non-linear network, and com-
pare it to the prediction derived from the efficient coding
hypothesis. Because any non-linear function can be lin-
earized around a given point, we hypothesized that, even
in a sensory network with non-linear responses, one can
still define a local linear model that can well describe the
network response to small perturbations around a given
reference stimulus. This local model should only be valid
around the reference stimulus, but it is sufficient to esti-
mate the sensitivity of the network.

We applied this strategy to the retina. We recorded
the activity of a large population of retinal ganglion cells
stimulated by a randomly moving bar. We characterized
the sensitivity of the retinal population to small stimu-
lus changes, by testing perturbations around a reference
stimulus, using closed-loop experiments. This allowed us
to build a complete model of the population response in
that region of the stimulus space, and to precisely quan-
tify the sensitivity of the neural representation. We found
that the sensitivity exhibits a peak as a function of fre-
quency, in agreement with the prediction from efficient
coding theory. Our approach is general and can be used
for any sensory network, and allows for testing the effi-
cient coding theory even for high dimension stimuli and
non-linear networks.

Results

Measuring sensitivity using closed-loop experi-
ments. We recorded from a population of 60 ganglion
cells in the rat retina using a 252-electrode array while
presenting a randomly moving bar (see Fig. 1A and Ma-
terials and Methods). Our aim was to measure the sen-
sitivity of the retinal population to perturbations of a
pre-defined stimulus. We measured the response to many
repetitions of a short (0.9 s) reference stimulus, as well as
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FIG. 1: Sensitivity of a neural population to visual
stimuli. A.: the retina is stimulated with repetitions of
a reference stimulus (here the trajectory of a bar, in blue),
and with perturbations of this reference stimulus of differ-
ent shapes and amplitudes. Purple and red trajectories are
perturbations with the same shape, of small and large ampli-
tude. B.: mean response of three example cells to the refer-
ence stimulus (left column) and to perturbations of small and
large amplitudes (middle and right columns).

many small perturbations around it. The reference stim-
ulus was the random trajectory of a white bar on a dark
background undergoing Brownian motion with a restor-
ing force (see Materials and Methods). Perturbations
were small changes affecting that reference trajectory in
its middle portion, between 300 and 630 ms. Perturba-
tions varied both in shape and in amplitude: we used
16 different perturbation shapes (shown in Fig. S1), each
presented at different amplitudes (Fig. 1A). The popu-
lation response was defined as sequences of spikes and
silences in 20 ms time bins for each neuron.

To assess the sensitivity of the neural code, we asked
how well different perturbations could be discriminated
from the reference stimulus based on the population
response. We expect the ability to discriminate per-
turbations to depend on their amplitude: responses to
small perturbations should be hardly distinguishable,
while large perturbations should elicit easily detectable
changes, as can be seen in Fig. 1B. One thus needs to find
the range of amplitudes for which discrimination is hard
but not impossible. This requires looking for the ade-
quate range of perturbation amplitudes “online,” during
the time course of the experiment.

In order to adapt the amplitude of perturbations to the
sensitivity of responses for each perturbation shape, we
implemented closed-loop experiments (Fig. 2A). At each
step, the retina was stimulated with a perturbed stimulus
and the population response was recorded. Spikes were
detected in real time for each electrode independently
by threshold crossing (see Materials and Methods). This
coarse characterization of the response is no substitute
for spike sorting, but it is fast enough to be implemented
in real time between two stimulus presentations, and suf-
ficient to detect changes in the response. This method
was used to adaptively select the range of perturbations
in real time during the experiment. Proper spike sorting
was performed after the experiment using the procedure
described in [21, 22], and used for all subsequent analy-
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FIG. 2: Closed-loop experiments to probe the range
of stimulus sensitivity. A. Experimental setup: we stim-
ulated a rat retina with a moving bar. Retinal ganglion
cell (RGC) population responses were recorded extracellularly
with a multi-electrode array. Electrode signals were high-pass
filtered and spikes were detected by threshold crossing. We
computed the discrimination probability of the population re-
sponse, and adapted the amplitude of the next perturbation.
B. Left: the neural responses of 60 sorted RCGs are pro-
jected along the axis going through the mean response to
reference stimulus and the mean response to a large pertur-
bation. Small dots are individual responses, large dots are
means. Middle: mean and standard deviation (in grey) of
response projections for different amplitudes of an example
perturbation shape. Right: distributions of the projected re-
sponses to the reference (blue), and to small (purple) and
large (red) perturbations. Discrimination is high when the
distribution of the perturbation is well separated from the
distribution of the reference. C. Discrimination probability
as a function of amplitude A. The discrimination increases as
an error function, (1/2)[1 + erf(d′/2)], with d′ = c× A (grey
line: fit). Ticks on the x axis show the amplitudes that have
been tested during the closed-loop experiment.
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ses.
To test whether a perturbation was detectable from

the retinal response, we projected the population re-
sponses along an axis defined by the difference between
the mean response to a large-amplitude perturbation and
the mean response to the reference (Fig. 2B). By defini-
tion, on average the projected response to a perturbation
is larger than to the reference. However, both are noisy
and broadly distributed around their mean (see Fig. 2B,
right, for example distributions). We define the discrimi-
nation probability as the probability that the response to
the perturbation is in fact larger than to the reference.
Its value is 100% if the responses to the reference and
perturbation are perfectly separable, and 50% if their
distributions are identical, in which case the classifier
does no better than chance. This discrimination proba-
bility is equal to the ‘area under the curve of the receiver-
operating characteristics,’ which widely used for measur-
ing the performance of binary discrimination tasks.

During our closed-loop experiment, our purpose was
to find the perturbation amplitude with a discrimination
of 85%. To this end we computed the discrimination
probability online as describe above, and then chose the
next perturbation amplitude to be displayed using the
‘accelerated stochastic approximation’ method [23, 24]:
when discrimination was above 85%, the amplitude was
decreased, otherwise, it was increased (see Materials and
Methods).

Fig. 2C shows the discrimination probability as a func-
tion of the perturbation amplitude for an example pertur-
bation shape. Discrimination grows linearly with small
perturbations, and then saturates to 100% for large ones.
This behavior is well approximated by an error function
(gray line) parametrized by a single coefficient, which we
call sensitivity coefficient and denote by c. This coef-
ficient measures how fast the discrimination probability
increases with perturbation amplitude: the higher the
sensitivity coefficient, the easier it is to discriminate re-
sponses to small perturbations. It can be interpreted
as the inverse of the amplitude at which discrimination
reaches 76%, and is related to the classical sensitivity in-
dex d′ [25], through d′ = c × A, where A denotes the
perturbation amplitude (see Materials and Methods).

All 16 different perturbation shapes were displayed,
and the optimal amplitude was searched for each of them
independently. We found a mean sensitivity coefficient of
c = 0.0516 µm−1. However, there were large differences
across the different perturbation shapes, with a minimum
of c = 0.028 µm−1 and a maximum of c = 0.065 µm−1.

Sensitivity and Fisher information. Can one
predict the sensitivity to any perturbation of the stimu-
lus? The stimulus is the trajectory of a bar and is high
dimensional. Generalizing the result of Seung and Som-
polinsky [26] to arbitrary dimension, we show that the
sensitivity can be expressed as (see Material and Meth-
ods):

d′ =
√
ST · I · S, (1)

where I is the Fisher information matrix, of the same
dimension as the stimulus, and S the perturbation rep-
resented as a column vector. Thus, the Fisher informa-
tion is sufficient to predict the code’s sensitivity to any
perturbation.

Despite the generality of Eq. 1, it should be noted
that estimating the Fisher information matrix requires a
model of the population response. As already discussed,
the non-linearities of the retinal code make the construc-
tion of a generic model of responses to arbitrary stimuli a
very arduous task, and is still an open problem. However,
the Fisher information matrix need only be evaluated lo-
cally, around the response to the reference stimulus.

Local model for predicting sensitivity. We in-
troduce a local model to describe the stochastic popu-
lation response to small perturbations of the reference
stimulus. This model will then be used to estimate the
Fisher information matrix, and from it the retina’s sen-
sitivity to arbitrary perturbations.

The model, schematized in Fig. 3A, assumes that per-
turbations are small enough that the difference in re-
sponse can be linearized around the reference stimulus.
First, the response to the reference is described by condi-
tionally independent neurons firing with time-dependent
rates estimated from the peristimulus time histograms
(PSTH). Second, the response to perturbations is mod-
eled as follows: for each neuron and for each 20 ms win-
dow of the considered response, we use a linear projection
of the perturbation onto a temporal filter to modify the
spike rates relative to the reference. These temporal fil-
ters were inferred from the responses to all the presented
perturbations, varying both in shape and amplitude (but
small enough to keep within the linear approximation).
Details of the model and its inference are given in Mate-
rials and Methods.

We first checked the validity of the local model by its
ability to predict the PSTH of cells in response to per-
turbations (Fig. 3B). To assess model performance, we
computed the difference of PSTH between perturbation
and reference, and compared it to the model prediction.
Fig. 3D shows the correlation coefficient of this PSTH
difference between model and data, averaged over all
recorded cells for one perturbation shape. To control
for noise in the responses, we computed the same quan-
tity for responses generated by the model (black line),
which gives an upper bound on the attainable perfor-
mance given the limited amount of data. Model perfor-
mance saturates that bound for amplitudes up to 60 µm,
indicating that the local model can accurately predict
the statistics of responses to perturbations within that
range. For larger amplitudes, the linear approximation
breaks down, and the local model fails to accurately pre-
dict the response. This failure for large amplitudes is
expected if the retinal population responds non-linearly
to the stimulus. We observed the same behavior for all
the perturbation shapes tested.

To further test the accuracy of the local model, we es-
timated its decoding capability, and compared it to the
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FIG. 3: Local model for responses to perturbations. A.
The firing rates in response to a perturbation of a reference
stimulus are modulated by filters applied to the perturbation.
There is a different filter for each cell and each time bin. B.
Raster plot of the responses of an example cell to the reference
(blue) and perturbed (red) stimuli for several repetitions. C.
Peristimulus time histogram (PSTH) of the same cell in re-
sponse to the same reference (blue) and perturbation (red).
Prediction of the local model for the perturbation is shown in
green. D. Performance of the local model at predicting the
change in PSTH induced by a perturbation, as measured by
Pearson’s correlation coefficient between data and model, av-
eraged over cells (green). The data PSTH were calculated by
grouping perturbations of the same shape and of increasing
amplitudes by groups of 20, and computing the mean firing
rate at each time over the 20 perturbations of each group.
The model PSTH was calculated by mimicking the same pro-
cedure. To control for noise from limited sampling, the same
performance was calculated from synthetic data of the same
size, where the model is known to be exact (black).

performance of a classical linear decoder [27, 28] trained
over an ensemble of random bar trajectories (see Materi-
als and Methods). The local model is an encoding model:
it predicts the probability of responses given an stimulus.
Yet it can be used to create a ‘Bayesian decoder’ using
Bayesian inversion (see Materials and Methods): given
a response, what is the most likely stimulus that gener-
ated this response under the model? If the local model
predicts the retinal response accurately, doing Bayesian
inversion of this model should be the best decoding strat-
egy, meaning that other decoders should perform equally
or worse. The linear decoder has previously shown high
performance in decoding this stimulus [28], and is there-
fore a good benchmark for comparison. When decoding
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FIG. 4: Bayesian decoding of the local model outper-
forms the linear decoder. A. Responses to a perturba-
tion of the reference stimulus (reference in blue, perturbation
in red) are decoded using the local model (green) or a lin-
ear decoder (orange). For each decoder, the area shows one
standard deviation from the mean. B. Decoding error as a
function of amplitude, for an example perturbation shape. C.
Signal-to-noise ratio for perturbations with different frequen-
cies (see Materials and Methods). The performance of both
decoders decreases for high frequency stimuli.

the bar trajectory, the Bayesian decoder was more precise
than the linear decoder, as measured by the variance of
the reconstructed stimulus (Fig. 4A). The Bayesian de-
coder had a smaller error than the linear decoder when
decoding perturbations of small amplitudes (Fig. 4B).
For larger amplitudes, where the local model is expected
to break down, the performance of the Bayesian decoder
decreased.

To quantify decoding performance as a function of the
stimulus frequency, we estimated the signal-to-noise ra-
tio (SNR) of the decoding signal for small perturbations
of various frequencies (see Materials and Methods). The
Bayesian decoder had a much higher SNR than the lin-
ear decoder at all frequencies (Fig. 4C; see also Fig. S3A
for an example on another reference stimulus), even if
both did fairly poorly at high frequencies. This results
suggests that inverting the local model might be the best
decoding strategy, and therefore confirms that the local
model is an accurate description of the retinal response
to small enough perturbations around the reference stim-
ulus.

Ideal versus empirical sensitivity. Now that we
have validated the local model, we can use it to compute
the Fisher information matrix described above. This
matrix takes a very simple form within the local linear
model, I = F · CR · FT, where F is the matrix contain-
ing the model’s temporal filters (stacked as row vectors),
and CR is the covariance matrix of the entire response
to the reference stimulus across neurons and time. This
Fisher information is consistent with the sensitivity that
we computed earlier. To demonstrate this consistency,
we first used the local model to simulate a large number
of responses to the different perturbations. When esti-
mating the sensitivity of the response with the method
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FIG. 5: The Fisher information predicts the experi-
mentally measured sensitivity. A. The probability of dis-
crimination of responses to an example perturbation shape at
different amplitudes, calculated from simulations of the local
model (green dots) is well predicted by the Fisher informa-
tion prediction, (1/2)[1 + erf(d′/2)], with d′ given by Eq. 1
(black line). B. Sensitivity coefficients c for the two reference
stimuli and 16 perturbation shapes, measured empirically (x
axis) and using the Fisher information (y axis). The purple
point corresponds to the perturbation shown in Fig. 2.

describe above, we obtained identical results than if we
estimated it directly from the Fisher information using
Eq. 1. This confirms that the Fisher information is a
compact and reliable way to estimate the sensitivity of a
model.

We then asked if the Fisher information could pre-
dict the sensitivity measured above from the recorded
responses. We compared the sensitivity coefficients mea-
sured experimentally to the prediction by the Fisher in-
formation, for all perturbations (Fig. 5B). We found that
the empirical sensitivity could be well predicted by the
Fisher information (Pearson correlation: 0.82, p = 10−8).
Although the Fisher prediction always overestimates the
observed sensitivity, a large fraction of this difference can
be attributed to the limited sampling of the responses,
as can be shown on simulated data (Fig. S2).

Signature of efficient coding in the sensitivity.
We showed that the Fisher information is a complete de-
scription of the sensitivity of the retinal response to per-
turbations around the reference stimulus. We can now
use it to study the sensitivity of the retina to pertur-
bations at different frequencies. Fig. 6A represents the
power spectrum of the bar motion. Power is maximum at
low frequencies, and quickly decays at large frequencies.
In many classical theories of efficient coding, sensitiv-
ity is expected to follow a inverse relationship with the
stimulus power [17, 18]. However, here we found that
the sensitivity is bell shaped, with a peak in frequency
around 4Hz (Fig. 6C; see also Fig. S3B for another ref-
erence stimulus).

To interpret this non-monotonic sensitivity, we stud-
ied a minimal theory of retinal function (similar to [29])
to test how efficient coding would reflect on the sensitiv-
ity of the retinal response. In this theory, the stimulus
is first passed though a low-pass filter, then corrupted
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FIG. 6: Signature of efficient coding in the sensitiv-
ity A. Spectral density of the stimulus used in experiments,
which is monotonically decreasing. B. Simple theory of reti-
nal function: the stimulus is filtered by noisy photoreceptors,
whose signal is then filtered by the noisy retinal network.
The retinal network filter was optimized to maximize infor-
mation transfer at constant output power. C. Sensitivity of
the recorded retina to perturbations of different frequencies.
Note the non monotonic behavior. D. Same as C, but for the
theory of optimal processing. E. Information transmitted by
the retina on the perturbations at different amplitudes. F.
Same as E, but for the theory. What about ... the units ?

by an input noise. This first stage describes process-
ing by photoreceptors [30]. The photoreceptor output is
then transformed by a transfer function and corrupted
by a second external noise, which mimics the subsequent
stages of retinal processing leading to ganglion cell ac-
tivity. Here the output is reduced to a single continuous
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signal (Fig. 6B, see Materials and Methods for mathe-
matical details). Note that this theory is linear: we are
not describing the response of the retina to any stim-
ulus, which would be highly non-linear, but rather its
linearized response to perturbations around a given stim-
ulus, as in our experimental approach. To apply the ef-
ficient coding hypothesis, we assumed that the photore-
ceptor filter is fixed, and we maximized the transmitted
information, measured by Shannon’s mutual information,
over the transfer function. We constrained the variance of
the output to be constant, corresponding to a metabolic
constraint on the firing rate of ganglion cells. In this sim-
ple and classical setting, this optimal transfer function,
and the corresponding sensitivity, can be calculated an-
alytically. Although the power spectrum of the stimulus
and photoreceptor output are monotonically decreasing,
and the noise spectrum is flat, we found that the opti-
mal sensitivity of the theory is bell shaped (Fig. 6E), in
agreement with our experimental findings (Fig. 6C).

One can intuitively understand this bell-shaped sensi-
tivity. On one hand, in the small and intermediate fre-
quency regime, sensitivity and stimulus power balance
each other out to ensure a flat distribution of the share
of information across frequencies. This result is classic:
when the input noise is negligible, the best coding strat-
egy for maximizing information is to whiten the input sig-
nal to obtain a flat output spectrum, which is obtained
by having the squared sensitivity be inversely propor-
tional to the stimulus power. On the other hand, at high
frequencies, the input noise is too high for the stimulus
to be recovered. Allocating sensitivity and output power
to those frequencies is therefore a waste of resources, as
it is devoted to amplifying noise, and sensitivity should
remain low to maximize information. A peak of sensi-
tivity is thus found between the high SNR region, where
stimulus dominates noise and whitening is the best strat-
egy, and the low SNR region, where information is lost
into the noise and coding resources should be scarce. A
result of this optimization is that the information trans-
ferred should monotonically decrease with frequency, just
as the input power spectrum does (Fig. 6F). We tested
if this prediction was verified in the data. We estimated
similarly the information rate against frequency in our
data, and found that it was also decreasing monotonically
(Fig. 6D). The retinal response has therefore organized
its sensitivity across frequencies in a manner that is con-
sistent with an optimization of information transmission
across the retinal network.

Discussion

We have developed a novel approach to characterize
experimentally the sensitivity of a sensory network, and
tested if this sensitivity was in agreement with the pre-
diction from efficient coding theory. We used closed-loop
experiments [31] to measure the sensitivity of the retinal
network to small perturbations around a given stimu-

lus. Using a local model that predicts well the neural
responses to these perturbations, we could determine the
sensitivity of the population, defined by the Fisher in-
formation matrix. When expressed in the frequency do-
main, we found that the Fisher information matrix has a
particular structure, with a non-monotonic sensitivity as
a function of frequency. We showed that this bell-shaped
sensitivity curve corresponds to a signature of efficient
coding of the photoreceptor responses by the retinal net-
work.

Our approach circumvents the need to build a non-
linear model that would accurately predict responses to
complex stimuli, by restricting ourselves to only a small
neighbourhood of the stimulus space. This simplifica-
tion allowed us to go beyond cases where the retinal
function can be summarized by a linear or quasi-linear
(e.g. ‘linear-nonlinear’ or LN) model. In the retina, ef-
ficient coding theory had led to key predictions about
the shape of the receptive fields, explaining their spa-
tial extent [3, 32], or the details of the overlap between
cells of the same type [6, 7, 33]. However, when stimu-
lated with complex stimuli like a fine-grained image, or
irregular temporal dynamics, the retina exhibits a non-
linear behaviour [19]. For this reason, up to now, there
was no prediction of the efficient theory for these com-
plex stimuli. Our approach allows us to overcome this
barrier and to characterize sensitivity for any arbitrarily
complex stimulus ensemble, as long as the experiment
duration allows for a reasonable exploration of the per-
turbation space.

Another possible use of our method would be to test
whether the retina efficiently codes for the statistics of
the stimulus by adapting to them specifically, or if it
remains an efficient code for natural stimuli, and per-
forms sub-optimally for artificial stimuli. In our case,
the temporal dynamics of the bar were close to the kind
of dynamics encountered in natural scenes [34, 35]. As
a result, it is difficult to tease apart the two hypothe-
ses. Future works could address this question by using
stimulus statistics that would be strong departure form
natural ones, and test if the retina adapts to code these
novel statistics more efficiently, or remains an efficient
encoder of natural statistics.

Recently, more elaborate versions of the efficient cod-
ing theory have been suggested, with different constraints
on the information maximization. For example, it has
been suggested that the retinal network could code ef-
ficiently the possible future stimuli, constrained on the
information carried about the past stimuli [36]. Our ap-
proach could be used to test if this predictive information
is optimized in cases where the retinal responses are not
amenable to a linear or LN model.

More generally, different versions of the efficient coding
theory have been proposed to explain the organisation of
several areas of the visual system [7, 9, 11, 12, 37] and
elsewhere [38–41]. Our approach is general and could
be used in other sensory structures to test the validity of
this hypothesis. In our case we found that the local model
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could be linear in the responses as well as in the stimulus,
and still predict the responses to small perturbations. In
more complex structures, it is possible that non-linear
models in the response are necessary. Yet, the linearity
in the stimulus would greatly simplify the problem. Our
approach might therefore be useful in general for sensory
systems.

The experimental characterization of the sensitivity of
a neural network could be useful for other purposes than
testing the efficient coding theory. First, the local model
is supposed to be a very good model for the responses
to small perturbations around a given stimulus, and as
such, a Bayesian decoder based on this model should per-
form close to optimal at decoding the stimulus. This can
be used to test how close to optimal different decoding
methods are. In our case, we found that linear decoding,
despite its very good performance, was quite far from
the performance of the Bayesian inversion of our local
model. This result implies that there should exist non-
linear decoding methods that outperform linear decoding
[42]. Testing the optimality of the decoding method is
crucial for brain machine interfaces [43]: in this case an
optimal decoder is necessary to avoid missing a signifi-
cant amount of information. Building our local model
is a good strategy for benchmarking different decoding
methods.

Finally, the estimation of the sensitivity along several
dimensions of the stimulus perturbations allows us to de-
fine which changes of the stimulus evoke the strongest
change in the sensory network, and which ones should
not make a big difference. Similar measures could in prin-
ciple be performed at the perceptual level, where some
pairs of stimuli are perceptually indistinguishable, while
others are well discriminated. Comparing the sensitiv-
ity of a sensory network to the sensitivity measured at
the perceptual level could be a promising way to relate
neural activity and perception.

Materials and Methods

Extracellular recording. Experiments were per-
formed on the adult Long Evans rat, in accordance with
institutional animal care standards. The retina was ex-
tracted from the euthanized animal and maintained in an
oxygenated Ames’ medium (Sigma-Aldrich). The retina
was recorded extracellularly on the ganglion cell side with
an array of 252 electrodes spaced by 60 µm (Multichan-
nel Systems), as previously described [44]. Single cells
were isolated offline using SpyKING CIRCUS, a custom
spike sorting algorithm [22]. We then selected 60 cells
that were well separated (no violations of refractory pe-
riod), had enough spikes (firing rate larger than 0.5 Hz),
had a stable firing rate during the whole experiment, and
responded consistently to repetitions of a reference stim-
ulus.

Online spike detection. During the experiment we
detected spikes in real time on each electrode indepen-
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FIG. S1: Perturbations shapes. We used the same 16
perturbation shapes for the 2 reference stimuli. The first 12
perturbation shapes were combinations of simple two Fourier
components, and the last 4 ones were random combinations of
them: fk(t) = cos(2πkt/T ), gk(t) = (1/k) sin(2πkt/T ), with
T the duration of the perturbation and t = 0 the beginning
of the perturbation. The first perturbations j = 1...7 were
Sj = fj − 1. For j = 8, . . . , 10 they were the opposite of
the three first ones: Sj = −Sj−7. For j = 11, 12 we used
Sj = gj−10+1 − g1. Perturbations 13 and 14 were random
combinations of perturbations 1, 2, 3, 11 and 12, constrained
to be orthogonal. Perturbations 15 and 16 were random com-
binations of fj for j ∈ [1, 8] and gk for k ∈ [1, 7], allowing
higher frequencies than perturbation directions 13 and 14.
Perturbation direction 15 and 16 were also constrained to be
orthogonal. The largest amplitude for each perturbation we
presented was 115 µm. An exception was made for pertur-
bations 15 and 16 applied to the second reference trajectory,
as for this amplitude they had a discrimination probability
below 70%. They were thus increased by a factor 1.5. The
largest amplitude for each perturbation was repeated at least
93 times, with the exception of perturbation 15 (32 times)
and 16 (40 times) on the second reference trajectory.
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FIG. S2: Simulations with limited data. Sensitivity coef-
ficient for different reference stimuli and perturbation shapes,
measured with the Fisher information or using simulations of
the local model with the same amount of data as in experi-
ments. The discriminability of simulations was measured in
the same way than for recorded responses. We show the mean
and std over 10 simulation repetitions.
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FIG. S3: Results for the second reference stimulus. A.
Same as Fig. 4C of the main text for the second reference
stimulus. B. Same as 6C of the main text for the second
reference stimulus.

dently. Each electrode signal was high-pass filtered using
a Butterworth filter with a 200 Hz frequency cutoff. A
spike was detected if the electrode potential U was lower
than a threshold of 5 times the median absolute deviation
of the voltage [22].

Stimulus. The stimulus was a movie of a white bar
on a dark background projected at 50 Hz with a digi-
tal micromirror device. The bar had intensity 7.6 1011

photons.cm−2.s−1, and 115 µm width. The bar trajec-
tory consisted in 17034 snippets of 0.9 s consiting in 6431
random trajectories, 2 reference trajectories repeated 391
times each and perturbations of these reference trajecto-
ries. All results are shown for the first reference stimulus,
expect Fig. 5B which combines both. The second refer-
ence stimulus served to check the robustness of our results
to the choice of reference. Results specific to the second
reference stimulus are reported in Fig. S3. Continuity
between snippets was ensured by constraining all snip-
pets to start and end in the middle of the screen with
velocity 0. Random trajectories followed the statistics
of an overdamped stochastic oscillator [28]. We used a
Metropolis-Hastings algorithm to generate random tra-
jectories satisfying the boundary conditions. The two
reference trajectories were drawn from that ensemble.

A perturbation is denoted by its discretized time se-
ries with time step δt = 20 ms, S = (S1, . . . , SL), with
L = 16, over the 320 ms of the perturbation. Per-
turbations can be decomposed as S = A × P , where

A2 = (1/L)
∑L
t=1 S

2
t is the amplitude, and P = S/A

the shape. Perturbations shapes were chosen to have
zero value and derivative at their boundaries. They are
represented in Fig. S1.

Linear discrimination. The response R of the N =
60 cells over time is binarized into B time bins of size
δ = 20 ms: Rib = 1 if cell i spiked during the bth time
bin, and 0 otherwise. R is thus a vector of size N × B,
labeled by a joint index ib. The response is considered
from the start of the perturbation until 280 ms afters its
end, so that B = 30.

To discriminate perturbations, we first measured the

responses Rref to multiple repetitions of the reference
stimulus, and the responses RSmax to multiple repetitions
of the largest amplitude of each perturbation shape (typ-
ically 110 µm). We computed the mean response to the
reference, 〈Rref〉, and to the largest-amplitude pertur-
bation, 〈RSmax〉, and projected all responses onto their
difference: we denote xref = (〈RSmax

〉 − 〈Rref〉)T · Rref

the projection of a response to the reference, and xS =
(〈RSmax

〉−〈Rref〉)T ·RS the projection of a response to S
(when projecting, we recalculated the mean responses by
excluding the response to project, to avoid overfitting).
The distributions of xref and xS are shown in blue and
purple in Fig. 2B. The probability of discrimination D is
defined as the probability that xref < xS .

Adaptation of perturbation amplitude. To
identify the range of perturbations that were neither too
easy nor too hard to discriminate, we adapted pertur-
bation amplitudes so that the discrimination probability
converged to target value D∗ = 85%. For each shape,
perturbation amplitudes were adaptated using the Ac-
celerated Stochastic Approximation [23]. If an amplitude
An triggered a response with discrimination probability
Dn, then at the next step the perturbation was presented
at amplitude An+1 with

logAn+1 = logAn −
C

rn + 1
(Dn −D∗), (2)

where C = 0.74, and rn is the number of reversal steps in
the experiment, i.e. the number of times when a discrim-
ination Dn larger than D∗ was followed by Dn+1 smaller
than D∗, or vice versa. We also presented amplitudes
regularly spaced on a log-scale. We presented the largest
amplitude Amax (value in caption of Fig. S1), and scaled
it down by multiples of 1.4, Amax/1.4

k with k = 1, . . . , 7.
Discrimination and sensitivity. We assume that

the difference of the projections, ∆x = xS − xref , is
approximately distributed as a Gaussian variable, by
virtue of the central limit theorem. For small pertur-
bations, its mean can be assumed to grow linearly with
the perturbation amplitude, µ = αA, and its variance
2σ2 = Var(xS)+Var(xref) to be independent of A. Then
the probability of discrimination is given by the error
function:

D = P (xref < xS) =
1

2
(1 + erf(d′/2)) (3)

where d′ = µ/σ = c×A is the standard sensitivity index
[25], and c = α/σ is defined as the sensitivity coeffi-
cient, which depends on the perturbation shape P . This
coefficient determines the amplitude A = c−1 at which
discrimination is equal to (1/2)[1 + erf(1/2)] = 76%.

Optimal sensitivity and Fisher information.
Given the distributions of responses to the reference stim-
ulus, P (R|ref), and to a perturbation, P (R|S), optimal
discrimination can be achieved by studying the sign of
the log-ratio L = ln[P (R|S)/P (R|ref)]. Let us call Lref

the value of L upon presentation of the reference stimu-
lus, and LS its value upon presentation of S. The proba-
bility of successful discrimination is the probability that
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LS > Lref . Using the central limit theorem we assume
again that LS and Lref are Gaussian. We can calculate
their mean and variance at small S: µ = 〈LS〉− 〈Lref〉 =
ST · I · S and 2σ2 = Var(LS) + Var(Lref) = 2ST · I · S,
where

Itt′ = −
∑
R

P (R|ref)
∂2 logP (R|S)

∂St ∂St′

∣∣∣∣
S=0

(4)

is the Fisher information matrix calculated at the refer-
ence stimulus. The discrimination probability is: D =
P (LS > Lref) = (1/2)[1 + erf(d′/2)], with

d′ =
µ

σ
=
√
ST · I · S. (5)

This result proves Eq. 1 with S = A× P .
Local model. We introduce the local model as a lin-

ear expansion of the logarithm of response distribution
as a function of both stimulus and response:

logP (R|S) = logP (R|ref) +
∑
ib,t

RibFib,tSt + const

= logP (R|ref) +RT · F · S + const.

(6)

The matrix F contains the linear filters with which the
change in the response is calculated from the linear pro-
jection of the past stimulus. For ease of notation, here-
after we use matrix multiplications rather than explicit
sums over ib and t.

The distribution of responses to the reference trajec-
tory is assumed to be conditionally independent:

logP (R|ref) =
∑
ib

logP (σib|ref). (7)

Since the variables Rib are binary, their mean value 〈Rib〉
upon presentation of the reference completely specifies
P (R|ref). They are directly evaluated from the responses
to repetitions of the reference stimulus, with a small
pseudo-count to avoid zero values.

To infer the filters Fib,t, we only include perturbations
that are small enough to remain within the linear approx-
imation. We first separated the dataset into a training
(285 × 16 perturbations) and testing (20 × 16 perturba-
tions) sets. We then defined, for each perturbation shape,
a maximum perturbation amplitude above which the lin-
ear approximation was considered no longer valid. We
selected this threshold by optimizing the model’s ability
to predict the changes in firing rates in the testing set.
Model learning was performed for each cell independently
by maximum likelihood with an L2 smoothness regular-
ization on the shape of the filters, using a pseudo-Newton
algorithm. The amplitude threshold obtained from the
optimization varied widely across perturbation shapes.
The number of perturbations for each shape used in the
inference ranged from 20 (7% of the total) to 260 (91%
of the total). Overall only 32% of the perturbations were
kept. Overfitting was limited: when tested on perturba-
tions of similar amplitudes, the prediction performance

on the testing set was never lower than 15% of the per-
formance on the training set.

Evaluating the Fisher information matrix, Eq. (4),
within the local model, Eq. 6, gives:

I = F · CR · FT (8)

where CR is the covariance matrix of R, which is diagonal
because of conditional independence.

Link with linear discrimination. There exists a
mathematical relation between the Fisher information of
Eq. 8 and linear discrimination. The linear discrimina-
tion task described earlier can be generalized by project-
ing the response difference, RS−Rref , along an arbitrary
direction u:

∆x = xS − xref = uT · (RS −Rref). (9)

∆x is again assumed to be Gaussian by virtue of the cen-
tral limit theorem. We further assume that perturbations
S are small, so that 〈RS〉− 〈Rref〉 ≈ (∂〈RS〉/∂S) ·S, and
that CR does not depend on S. Calculating the mean and
variance of ∆x under these assumption gives an explicit
expression of d′ in Eq. 3:

d′ =
uT · ∂〈RS〉

∂S · S√
uT · CR · u

. (10)

Maximizing this expression of d′ over the direction of
projection u yields u = const×C−1R · (∂〈RS〉/∂S) ·S and

d′ =
√
ST · IL · S, (11)

where IL = (∂〈RS〉/∂S)T ·C−1R · (∂〈RS〉/∂S) is the linear
Fisher information [45, 46]. This expression of the sen-
sitivity corresponds to the best possible discrimination
based on a linear projection of the response.

Within the local linear model defined above, one has
∂〈RS〉/∂S = F ·CR, and IL = F ·CR · FT , which is also
equal to the true Fisher information (Eq. 8): I = IL.
Thus, if the local model (Eq. 6) is correct, discrimina-
tion by linear projection of the response is optimal and
saturates the bound given by the Fisher information.

Note that the optimal direction of projection only
differs from the direction we used in the experiments,
u = 〈RS〉 − 〈Rref〉, by an equalization factor C−1R . We
have checked that applying that factor only improves dis-
crimination by a few percents (data not shown).

Linear decoder. We infer the linear decoder filters
by minimizing the mean square error [27] in the recon-
struction of 4000 random trajectories governed by the
dynamics of an overdamped oscillator with noise. To al-
low for a meaningful comparison with the local model,
the linear filters integrate the past of the stimulus for
τ = 15 × δt = 300ms. Tested on a sequence of ∼ 400
repetitions of one of the two reference trajectories, where
the first 300 ms of each have been cut out, we obtain a
correlation coefficient of 0.87 among the stimulus and its
reconstruction.
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Bayesian decoder. We use Bayes’ rule to infer the
presented stimulus given the response:

P (S|R) =
P (R|S)P (S)

P (R)
(12)

where P (R|S) is given by the local model (Eq. 6), P (S)
is the prior distribution over the stimulus, and P (R) is a
normalization factor that does not depend on the stimu-
lus. P (S) is taken to be the distribution of trajectories
from an overdamped stochastic oscillator with the same
parameters as in the experiment. The stimulus is inferred
by maximizing the posterior P (S|R) numerically, using
a pseudo-Newton iterative algorithm.

Local signal to noise ratio in decoding. For any
decoder, the inferred value of the stimulus Ŝ can be writ-
ten as:

Ŝ = T · S + b+ ε, (13)

where T is a transfer matrix which differs from the iden-
tity matrix when decoding is imperfect, b is a systematic
bias, ε is a Gaussian noise of covariance Cε. We inferred
the values of b and Cε from the ∼ 400 reconstructions
of the reference stimulation using either of the two de-
coders, and the values of T from the reconstructions of
the perturbed trajectories. The inference is done by an
iterative algorithm similar to that used for the inference
of the filters F of the local model. The signal-to-noise ra-
tio (SNR) in decoding the perturbation S is then defined
as:

SNR(S) = ST · TT · C−1ε · T · S. (14)

In Fig. 4C, to compute SNR for a frequency ν, we use
Eq. 14 with St = A exp(2πiνtδt), where A is the ampli-
tude of the perturbation shown in Fig. 4A.

Frequency dependence of sensitivity and infor-
mation. To analyze the behavior in frequency of the
sensitivity, we compute the sensitivity index for an os-
cillating perturbation of unitary amplitude. We apply
Eq. 1 with Ŝt(ν) ≡ exp(2πiνtδt). In order to estimate
the spectrum of the information rate we compute its be-
havior within the linear theory [29]:

MI(ν) =
1

2
log
[
1 + CS(ν)I(ν)/δt2

]
(15)

where CS(ν) is the power spectrum of stimulus, and

I(ν) = (δt/L)ŜT(ν) · I · Ŝ(ν).

Efficient coding theory. To build a theory of reti-
nal sensitivity, we follow closely the approach of Van
Hateren [29]. The stimulus is first linearly convolved with
a filter f , of power F , then corrupted by an input white
noise with uniform power H, then convolved with the lin-
ear filter r of the retina network of power R, and finally
corrupted again by an external white noise Γ. The out-
put power spectrum O(ν) can be expressed as a function
of frequency ν:

O(ν) = (δtL)G(ν)[(δtL)F(ν)CS(ν) +H] + Γ (16)
where CS(ν) is the power spectrum of the input. The
information capacity of such a noisy input-output chan-
nel is limited by the allowed total output power V =∑
ν O(ν), which can be interpreted as a constraint on

the metabolic cost. The efficient coding hypothesis con-
sists in finding the input-output relationship g∗, of power
G∗(ν), that maximizes the information transmission un-
der a constraint on the total power of the output. The
optimal Fisher information matrix can be computed in
the frequency domain as:

I(ν) =
δt4L2G∗(ν)F(ν)

Γ + LδtG∗(ν)H
. (17)

The photoreceptor filter [47] was taken to be exponen-
tially decaying in time, f = τ−1 exp(−t/τ) (for t ≥ 0),
with τ = 100 ms. The curve I(ν) only depends on
H, Γ and V through two independent parameters. For
the plots in Fig. 6 we chose: H = 3.38 µm2s, Γ =
0.02 spikes2s and V = 307 spikes2s, δt = 20 ms, and
L = 2, 500. In Fig. 6D, we plot the sensitivity to oscil-
lating perturbation with fixed frequency ν, which results
in
√
I(ν)L/δt. In Fig. 6E we plot the spectral density of

the transferred information rate:

MI(ν) =
1

2
log

[
1 +

(δtL)2G(ν)F(ν)CS(ν)

Γ + (δtL)G(ν)H

]
. (18)
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