








does for the visual input? In particular, if we can write down all
of the predictive information in one bit, then we can imagine that
there is a neuron inside the brain that takes the N cells as inputs,
and then a spike or silence at the output of this “predictor
neuron” ðσoutÞ captures the available predictive information.
Compressing our description of input words down to 1 bit

means sorting the words wt into two groups wt → σout. If this
grouping is deterministic, then with N = 4 neurons there are 65,536
possible groupings, and so we can test all of the possibilities
(Stimulus Information in σout for One Group and Fig. S2.). It indeed
is possible to represent almost all of the predictive information
from four neurons in the spiking or silence of a single neuron, and
doing this does not require the predictor neuron to generate
spikes at anomalously high rates; this result generalizes across
many groups of cells (Fig. 5A). We also find that the optimal rules
can be well approximated by the predictor neuron thresholding an
instantaneous weighted sum of its inputs—a perceptron (Fig. 5B)—
suggesting that such predictor neurons are not only possible in
principle, but biologically realizable.
Predictor neurons are constructed without reference to the

stimulus—just as the brain would have to do—but by repeating the
same naturalistic movie many times, we can measure the in-
formation that the spiking of a predictor neuron carries about the
visual input, using standard methods (15, 23). As we see in Fig. 5C,
model neurons that extract more predictive information also
provide more information about the visual inputs. There is some
saturation in this relationship, perhaps because the most effective
predictor neurons are more efficient in selecting the relevant bits
of the past. Nonetheless, it is clear that, by solving the prediction
problem, the brain can “calibrate” the combinations of spiking and
silence in the ganglion cell population, grouping them in ways that
capture more information about the visual stimulus.
If we return to the simple world of a single bar moving on the

screen, as above, then we can see that the spikes in predictor
neurons are associated with interesting patterns of motion. One
example is in Fig. 5D, where we see that a spike corresponds to an
exceptionally long period of nearly constant velocity motion, fol-
lowed by a reversal. Other examples include periods of high speed,
independent of direction, or moments where the bar is located at a
particular position with very high precision (see Feature Selectivity
in Predictor Neurons and Fig. S3 for details). These results, which
need to be explored more fully, support the intuition that the visual
system computes motion not for its own sake, but because, in a
world with inertia, motion estimation provides an efficient way of
representing the future state of the world.

Discussion
Information theory defines the capacity of a signal to carry in-
formation (the entropy), but information itself is always information
about something; successful applications of information theoretic
ideas to biological systems are cases where it is clear which in-
formation is relevant. However, how can we use information theory
to think about neural coding and computation more generally? It is
difficult to guess how organisms will value information about par-
ticular features of the world, but value can be attached only to bits
that have the power to predict the organism’s future experience.
Estimating how much information neural responses carry about the
future of sensory stimuli, even in a simple world, we have found
evidence that the retina provides an efficient, and perhaps nearly
optimal, representation of predictive information (Fig. 3).
Efficient representation of predictive information is a principle

that can be applied at every layer of neural processing. As an
illustration, we consider the problem of a single neuron that tries
to predict the future of its inputs from other neurons, and encodes
its prediction in a single output bit—spiking or silence. This pro-
vides a way of analyzing the responses from a population of
neurons that makes no reference to anything but the responses
themselves, and in this sense provides a model for the kinds of

computations that the brain can do. Predictive information in the
patterns of activity is coded synergistically (Fig. 4), maximally ef-
ficient representations of this information involve spiking at rea-
sonable rates, without any further constraints, and the optimal
predictor neurons are efficient transmitters of information about
the sensory input, even though the rules for optimal prediction are
found without looking at the stimulus (Fig. 5). Thus, solving the
prediction problem would allow the brain to identify features of
the retina’s combinatorial code that are especially informative
about the visual world, without any external calibration.
The idea that neural coding of sensory information might be

efficient, or even optimal, in some information theoretic sense, is
not new. Individual neurons have a capacity to convey information
that depends on the time resolution with which spikes are ob-
served, and one idea is that this capacity should be used efficiently
(24, 25), in part by adapting coding strategies to the distribution of
the inputs (26–28). Another idea is that the neighboring cells in
the retina should not waste their capacity by transmitting re-
dundant signals, and minimizing this redundancy may drive the
emergence of spatially differentiating receptive fields (29, 30).
Similarly, temporal filtering may serve to minimize redundancy in
time (31), and this is sometimes called “predictive coding” (32).
Reducing redundancy requires removing any predictable compo-
nents of the input, keeping only the deviations from expectation.
In contrast, immediate access to predictive information requires
an encoding of those features of the past that provide the basis for
optimal prediction. The retina actively responds to predictable
features of the visual stimulus (33) and, in the case of smooth
motion, can anticipate an object’s location in a manner that cor-
rects for its own processing delay (34, 35). Our current results
suggest that, even for irregular motion, the retina can efficiently
extract the features of the stimulus that allow it to encode all
available predictive information. Efficient coding of predictive
information is therefore a very different principle from most of
those articulated previously, and one that illustrates the surprising
computational powers of local neural circuits, like the retina.
Although there has been much interest in the brain’s ability

to predict particular things, our approach emphasizes that pre-
diction is a general problem, which can be stated in a unified
mathematical structure across many contexts, from the extrap-
olation of trajectories to the learning of rules (20). Our results
on the efficient representation of predictive information in the
retina thus may hint at a much more general principle.

Materials and Methods
Multielectrode Recordings. Data were recorded from larval tiger salamander
retina using the dense 252-electrode arrays with 30-μm spacing, as described in
ref. 36. A piece of retina was freshly dissected and pressed onto the multi-
electrode array. While the tissue was perfused with Ringer’s solution, images
from a computer monitor were projected onto the photoreceptor layer via an
objective lens. Voltages were recorded from the 252 electrodes at 10 kHz
throughout the experiments, which lasted 4–6 h. Spikes were sorted conser-
vatively (36), yielding populations of 49 or 53 identified cells from two ex-
periments, from which groups of different sizes were drawn for analysis.

Stimulus Generation and Presentation. Movies were presented to the retina
from 360× 600-pixel display, with 8 bits of grayscale. Frames were refreshed
at 60 fps for naturalistic and moving bar stimuli, and at 30 fps for randomly
flickering checkerboards. The monitor pixels were square and had a size of
3.81 μm on the retina. The moving bar (Fig. 1) was 11 pixels wide and black
(level 0 on the grayscale) against a background of gray (level 128). The
naturalistic movie was a 19-s clip of fish swimming in a tank during feeding
on an algae pellet, with swaying plants in the background, and was re-
peated a total of 102 times. All movies were normalized to the same mean
light intensity.

Motion Trajectories. The moving-bar stimulus was generated by a stochastic
process that is equivalent to the Brownian motion of a particle bound by
a spring to the center of the display: the position and velocity of the bar at
each time t were updated according to the following:
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xt+Δτ = xt + υtΔτ, [4]

υt+Δτ = ½1−ΓΔτ�υt −ω2xtΔτ+ ξt
ffiffiffiffiffiffiffiffiffi
DΔτ

p
, [5]

where ξt is a Gaussian random variable with zero mean and unit variance,
chosen independently at each time step. The natural frequency ω = 2π × (1.5 s−1)
rad/s, and the damping Γ=20  s−1; with ζ=Γ=2ω= 1.06, the dynamics are
slightly overdamped. The time step Δτ=1=60  s matches the refresh time of the
display, and we chose D= 2.7× 106   pixel2=s3 to generate a reasonable dynamic
range of positions. Positions at each time were rounded to integer values, and
we checked that this discretization had no significant effect on any of the sta-
tistical properties of the sequence, including the predictive information.

Common Futures. To create trajectories in which several independent pasts
converge onto a common future, we first generated a single very long tra-
jectory, comprised of 107 time steps. From this long trajectory, we searched
for segments with a length of 52 time steps such that the last two positions
in the segment were common across multiple segments, and we joined each
of these “pasts” on to the same future, generated with the common end-
points as initial conditions; matching two successive points is sufficient given
the Markovian structure of Eqs. 4 and 5. Thirty such distinct futures with 100
associated pasts were displayed in pseudorandom order. Both the past and
the future segments of the movie were each 50Δτ in duration.

Estimating Information. For all mutual informationmeasures, we followed ref.
37: data were subsampled via a bootstrap technique for different fractions f
of the data, with 50 bootstrap samples taken at each fraction. For each
sample, we identify frequencies with probabilities, and plug into the defi-
nition of mutual information to generate estimates IsampleðfÞ. Plots of
IsampleðfÞ vs. 1=f were extrapolated quadratically to infinite sample size
ð1=f → 0Þ, and the intercept I∞ is our estimate of the true information; errors
were estimated as the SD of IsampleðfÞ at f = 0.5, divided by

ffiffiffi
2

p
. Information

estimates also were made for randomly shuffled data, which should yield
zero information. If the information from shuffled data differed from zero
by more than the estimated error, or by more than absolute cutoff of
0.02  bits=spike, we concluded that we did not have sufficient data to gen-
erate a reliable estimate. In estimating information about bar position (Fig. 1),

we compressed the description of position into K = 37 equally populated bins
and checked that the information was on a plateau vs. K, meaning that we
had enough adaptive bins to capture all of the entropy in the original position
variable. When we compute the information that neural responses carry about
the past stimulus, we follow refs. 15 and 23, making use of the repeated
“futures” in the common future experiment.

Information Bottleneck. Information about the future of the stimulus is
bounded by the optimal compression of the past, for each given compression
amount. Formally, we want to solve the “bottleneck problem” (18):

min
pðzjxpastÞ

  L= I
�
Xpast; Z

�
− βIðZ;XfutureÞ, [6]

where we map pasts xpast ∈Xpast into some compressed representation z∈ Z,
using a probabilistic mapping pðzjxpastÞ. The parameter β sets the trade-off
between compression [reducing the information that we keep about the
past, IðXpast; ZÞ] and prediction [increasing the information that we keep
about the future, IðZ;XfutureÞ]. Once we find the optimal mapping, we can
plot IðZ;XfutureÞ vs. IðXpast; ZÞ for the one parameter family of optimal solu-
tions obtained by varying β. In general, this is a hard problem. Here, we are
interested in trajectories such that position and velocity (together) are both
Gaussian and Markovian, from Eq. 4. The Markovian structure means that
optimal predictions can always be based on information contained at the
most recent point in the past, and that prediction of the entire future is
equivalent to prediction one time step ahead. Thus, we can take xpast ≡ ðxt , vtÞ
and xfuture ≡ ðxt+Δτ , υt+ΔτÞ. The fact that all of the relevant distributions are
Gaussian means that there is an analytic solution to the bottleneck problem
(38), which we used here. Further details are provided in Bound Calculation.
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Bound Calculation
Solving Eq. 6 in Materials and Methods is difficult, in general.
However, in the present case the underlying signal xt is Gaussian,
and so analytic approaches are possible, following ref. 1. If we
consider the past history of the trajectory to be a vector Xp, and
the future trajectory to be a vector Xf , then we can define two
probability distributions, PðXf Þ and PðXf jXpÞ. Both of these are
Gaussian, so they are described completely by the means and
covariance matrices. Let us call the covariance matrices of the
two distributions Σ and Σc, respectively. Then, as explained in
ref. 1, a crucial role is played by the matrix M≡ΣcΣ−1 and its
eigenvalues λ1, λ2,⋯ (in decreasing order). The underlying
parameters of the stimulus—Γ, ω, and D in Eqs. 4 and 5—
determine these eigenvalues, but the functional relationship is
complicated and (for us) not very illuminating; one can also
estimate the matrix M numerically from a long simulation of the
trajectory xt.
We are trying to calculate the bounding curve in Fig. 2A, which

determines the maximum possible value of Ifuture given a fixed
value of Ipast. Adapting the results of ref. 1 to this case, we can
write the following:

Ipast − Ifuture* =
nI
2
log

 YnI
i=1

ð1− λiÞ
1
nI + e

2Ipast
nI

YnI
i=1

λ
1
nI
i

!
, [S1]

where the index nI defines the cutoff on the number of eigen-
values used to compute the bound segment. The bound curve is
composed of several segments with increasing numbers of eigen-
values added as our information about the past trajectory in-
creases. This bound is continuous, smooth, and concave. For
the particular dynamics defined by Eqs. 4 and 5 in the main text,
the bound curve was obtained for each Δt, by computing the
covariance of the position and velocity in a long trajectory gen-
erated by these dynamics.

Linear–Nonlinear Model
To test whether simple receptive field properties of retinal
ganglion cells can account for the saturation of the bound on the
predictive information, we constructed linear–nonlinear (LN)
model neurons based on our data. In LN models, the probability
of spiking is an instantaneous, nonlinear function of a linearly
filtered version of the sensory input. In the case of retinal gan-
glion cells that we study here, the inputs are the image or con-
trast as a function of space and time, sð~x, tÞ. Thus, if we write the
probability per unit time of a spike (the firing rate), we have the
following:

rLNðtÞ= r0gðzÞ, [S2]

where r0 sets the scale of firing rates, gðzÞ is a dimensionless
nonlinear function, and

zðtÞ=
Z t

0

dτ
Z

d2x  f
�
~x, τ
�
s
�
~x, t− τ

�
; [S3]

the function f ð~x, τÞ is the receptive field.
It is a theorem that, if we deliver stimuli that are drawn from a

Gaussian white noise ensemble, then

f
�
~x, τ
�
∝
D
s
�
~x, t− τ

�
δ
�
t− tspike

�E
, [S4]

where tspike is the time of a spike and h⋯i denotes an average
over a long movie. As described in Fig. 4D (“checker”), we have
done experiments with randomly flickering checkerboards that
approximate Gaussian white noise down to the frame time of
1=30  s and the pixel size of 40 × 40 μm. We used these data to
estimate receptive fields by reverse correlation (Eq. S4) and used
cubic spline interpolation to extend these receptive fields down
to a resolution of Δτ= 1=60  s.
If we choose the scale of firing rates to match the size of the

time bins, r0 = 1=Δτ, then the function gðzÞ is exactly the proba-
bility of a spike in a bin given that the output of the filter is z, that
is, gðzÞ= pðspikejzÞ. Experimentally, we can sample the value of z
in all of the bins with spikes, which allows us to estimate
pðzjspikeÞ, and then Bayes’ rule tells us that

gðzÞ≡ pðspikejzÞ= pðzjspikeÞ · pðspikeÞ
pðzÞ , [S5]

where pðzÞ is the distribution of z across the whole experiment.
Nonlinearities derived in this way from the checkerboard exper-
iments are very well fit by logistic functions,

gðzÞ= g0
1+ e−γðz−θÞ

. [S6]

Note that g0 is the maximum spike probability, and hence is
bounded by 1; γ defines a gain, and θ, a threshold for the
responses.
If we take the LN model derived from the random checker-

board stimuli and use it to produce neural responses to the
moving-bar stimulus, the predictive information carried by the
neurons is drastically wrong. However, this is not surprising,
because even the mean firing rates are wrong. This is because
retinal ganglion cells adapt to match the scale of their nonlinear
input/output relations [summarized here as gðzÞ] to the dynamic
range of inputs. To give our model a chance of working, then, we
should let the parameters in Eq. S6 be adjusted to match some
average properties of the neural response to the moving bar. We
chose to match the mean spike rate,

r=
1
T

ZT

0

dt  rLNðtÞ, [S7]

where T is the duration of the stimulus movie, and the informa-
tion that individual spikes provide about the (past) stimulus (2),

I1 =
1
T

ZT

0

dt 
rLNðtÞ

r
log2

�
rLNðtÞ

r

�
. [S8]

To match the data, we found in all cases that we need to set g0 = 1,
its maximum possible value, and then matching I1 and r fixed the
values of the gain γ and the threshold θ.
Fig. S1A shows an example of the LN model for one neuron.

In this cell, as in most, we found that the receptive field f ð~x, τÞ
was separable into spatial and temporal components, as shown.
Fig. S1B shows that, for all of the cells in our sample, we have
been able to match the values of r (left) and I1 (right). Having
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built a population of model neurons, we can now perform the
same analysis that we did for the real neurons: select groups of
cells, compute the information that patterns of spiking and si-
lence provide about both the past and future of the stimulus
in the “common future” experiment, and then plot the results for
the best of these groups in the information plane, as in Fig. 3D of
the main text. Results are summarized in Fig. S1C.
Results shown in Fig. S1C reveal that the LN model fails to

recapitulate the near-optimal behavior of the real data. All
groups fall away from the bound determined by Δt= 1=60 s, the
delay between the current response and the onset of the com-
mon future. Importantly, when we compute information about
the future, we assume that the future starts now (as in real life!)
and do not make any allowances for processing delays. We could,
instead, compare the performance of the LN model with bounds
calculated assuming that there is a delay between past and fu-
ture, so that Δt* =Δt+ tdelay. The bound for Δt* is shown by the
dashed curve in Fig. S1, where we have chosen tdelay = 117 ms,
comparable to the delay one might estimate from the peak of the
information about position in Fig. 1B, or from the structure of
the receptive fields themselves in Fig. S1A. Interestingly, the
model neurons do come close to this less restrictive bound.

Stimulus Information in σout for One Group
To find the optimal downstream predictor neuron, we exhaus-
tively sampled all possible Boolean transforms of the input. All
partitions of four-cell input patterns into spike and no-spike
responses (excluding the one-half that transform no input,
0000 . . . 0, into spiking output yielding high firing rates), and
their resulting predictive information about the future input are
shown in Fig. S2A. The density of a scatter plot of the 65,536
points representing a particular predictor neuron’s output firing
rate and predictive information are shown. Each point was
convolved with a Gaussian and summed with other points. The
plot is normalized to have a peak of 1. Not surprisingly, pre-
dictive information increases with output firing rate. These rates,
however, remain within a biologically plausible range.
In Fig. 5C of the main text, we plotted the average stimulus

information as a function of predictive information about the
future inputs for 200 downstream cells. In Fig. S2B, we plot the
same information for one group of four retinal input cells and
all possible binary output rules that govern predictor neuron
firing (density is represented in the same way as in A). The rate

measured here is the firing rate of a predictor neuron with a
particular rule, given the observed sequence of input spikes. This
shows that capturing more of the predictive information in the
patterns of retinal ganglion cell activity also allows the hypo-
thetical predictor neuron to convey greater information about
the visual stimulus: building better local predictions leads to
better stimulus coding.

Feature Selectivity in Predictor Neurons
In Fig. 5D and Fig. S2 C–E, we show four kinds of stimulus
feature selectivity that emerged in our analysis of optimized
predictor neurons, constant velocity detection, velocity detection
(regardless of direction of motion), position refinement, and
time shift of the best position estimate toward the future. In Fig.
S3, we show two more examples for each of these features.
We see that the predictor neurons respond to certain aspects of

stimulus motion that might be useful for prediction—motion at
constant speed but either direction (Fig. S2C) and long epochs
of constant velocity (Fig. 5D and Fig. S3 B and F), followed by a
reversal. These long constant-velocity epochs are predictive of
reversals, as dictated by the equation of motion we defined for
the bar’s trajectory. After long excursions in one direction, the
spring constant coupling the bar to the center of the visual world
is engaged and pulls the bar back toward center. When a pre-
dictor neuron fires in response to this constant motion, its
spiking could be used downstream to predict reversal.
The estimate of the bar position in the predictor neurons is

better (lower variance) than in any one of its inputs (Fig. S2D),
showing that optimizing for predicting inputs leads to a re-
finement in the stimulus estimate. Also, these downstream cells
have interesting spike-triggered average stimuli when they are
optimized (for the same inputs) to make predictions farther into
the future (Fig. S2E): the time of sharpest stimulus discrimina-
tion moves closer to the time of a spike in the downstream cell
when it is more predictive of its inputs farther in the future. This
again shows that predictable components of the retina’s firing
map back to predictable components of the stimulus, but also
that processing lags can be circumvented by coding for predict-
able firing in response to a moving stimulus.
Thus, searching for efficient representations of the predictive

information in the state of the retina itself drives the emergence of
motion estimation.
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Fig. S1. An LN model cannot reproduce the saturation of the bound on predictive information observed in retinal data. (A) An example fit to a cell in our
dataset. (B) Adjusting parameters of the nonlinearity reproduces both the mean firing rate and single spike information present in all cells in our dataset.
(C) Populations of LN neurons (x’s) modeled in this way do not saturate the bound on predictive information (solid curve; Δt = 1/60 s) as seen in the real data
(small circles; less saturated coloring; same data points as shown in Fig. 3 in the main text). The dashed curve represents the bound on predictive information
about the future possible with Δt = 8Δτ ∼ 133 ms. Larger populations of model neurons fall away from this curve.

Fig. S2. Increasing word–word predictive information enhances stimulus coding for predictor cells. (A) Predictive information, Iðσoutt ;Wt+ΔtÞ, captured by all
possible mappings wt → σout, as a function of the average firing rate of σout, for one particular four-cell input group. A scatter plot of the data are represented
as a density plot. The scale bar on the Right indicates density, normalized to a peak of 1. (B) The stimulus information for all downstream rules for the group in
A, also plotted as a density plot. (C) Distribution of stimuli that give rise to a spike in an optimized predictor neuron, for a second particular group of four cells
in response to the moving bar stimulus ensemble in Fig. 1 of the main text. (D) For a third group of inputs, the SD of bar positions triggered on a spike in the
predictor neuron (black) or on spikes in the individual input neurons (gray). Δt = 1/60 s in A–D. (E) For a fourth group of cells, the SD of bar positions con-
ditional on a predictor neuron spike varies as we optimize for predictions with delays of Δt = 1/30 s (solid curve), Δt = 1/15 s (dashed curve), and Δt = 1/10 s
(dotted curve).
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Fig. S3. Spike-triggered average stimuli for firing in optimized predictor neurons. (A and E) Distribution of stimuli that give rise to a spike in an optimized
predictor neuron, for two particular groups of four cells in response to the moving-bar stimulus ensemble in Fig. 1 of the main text; the predictor neuron selects
for motion at constant speed, with relatively little direction selectivity. Δt = 1/60 s. (B and F) The average velocity triggered on a spike of the predictor neuron;
the predictor neurons select for a long epoch of constant velocity. Light gray lines show the spike-triggered average stimuli for the input cells. (C and G) The SD
of bar positions triggered on a spike in the predictor neuron (black) or on spikes in the individual input neurons (gray); predictor neurons provide a more
refined position estimate. (D and H) The SD of bar positions conditioned on a predictor neuron spike varies as we optimize for predictions with delays of Δt =
1/30 s (solid curve), Δt = 1/15 s (dashed curve), and Δt = 1/10 s (dotted curve); optimizing predictions can compensate for latencies. Not all groups were sampled
exhaustively at every Δt; the results corresponding to the delay denoted by what would be a solid curve in H was not computed.
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